Abstract

All-dielectric metasurfaces consist of two-dimensional arrangements of nanoresonators and are of paramount importance for shaping polarization, phase, and amplitude of both fundamental and harmonic optical waves. To date, their reported nonlinear optical properties have been dominated by local features of the individual nanoresonators. However, collective responses typical of either Mie-resonant metamaterials or photonic crystals can potentially boost the control over such optical properties. In this work we demonstrate the generation of a second harmonic optical wave with zero-order diffraction, from a metasurface made out of AlGaAs-on-AlOx nanocylinders arranged with spatial period comparable to the pump telecom wavelength. Upon normal incidence of the pump beam, the modulation of Mie resonances via Bragg scattering at both fundamental and second harmonic frequencies enables paraxial second harmonic light generation by diffraction into the zero order, with a 50-fold increase in detected power within a s...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.