Abstract

We study zero and normal modes for scalar and spinor fields in Kerr–anti de Sitter spacetime as a bound state problem with Dirichlet and Neumann boundary conditions. Zero mode is defined as its momentum near the horizon to be zero: , and is shown not to exist as a physical state for both scalar and spinor fields. Physical normal modes must satisfy the spectrum condition as results of (i) non-existence of zero mode and (ii) the analyticity with respect to the rotation parameter of Kerr–anti de Sitter spacetime. Under the spectrum condition, the super-radiant modes are shown to be type 2 super-radiance, which is characterized by negative frequency and positive momentum on the horizon . The type 2 super-radiant modes are necessary for the completeness relation of normal modes and are stable. Applying the spectrum condition to black hole thermodynamics, the brick wall model is shown to be well-defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.