Abstract

Existing mechanical metamaterials are typically designed to either withstand loads as a stiff structure, shape morph as a floppy mechanism, or trap energy as a multistable matter, distinct behaviours that correspond to three primary classes of macroscopic solids. Their stiffness and stability are sealed permanently into their architecture, mostly remaining immutable post-fabrication due to the invariance of zero modes. Here, we introduce an all-in-one reprogrammable class of Kagome metamaterials that enable the in-situ reprogramming of zero modes to access the apparently conflicting properties of all classes. Through the selective activation of metahinges via self-contact, their architecture can be switched to acquire on-demand rigidity, floppiness, or global multistability, bridging the seemingly uncrossable gap between structures, mechanisms, and multistable matters. We showcase the versatile generalizations of the metahinge and remarkable reprogrammability of zero modes for a range of properties including stiffness, mechanical signal guiding, buckling modes, phonon spectra, and auxeticity, opening a plethora of opportunities for all-in-one materials and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.