Abstract
Abstract We are concerned with the existence and uniqueness of local or global solutions for slightly compressible viscous fluids in the whole space. In [6] and [7], we proved local and global well-posedness results for initial data in critical spaces very close to the one used by H. Fujita and T. Kato for incompressible flows (see [14]). In the present paper, we address the question of convergence to the incompressible model (for ill-prepared initial data) when the Mach number goes to zero. When the initial data are small in a critical space, we get global existence and convergence. For large initial data and a bit of additional regularity, the slightly compressible solution is shown to exist as long as the corresponding incompressible solution does. As a corollary, we get global existence (and uniqueness) for slightly compressible two-dimensional fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales Scientifiques de l’École Normale Supérieure
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.