Abstract

Graphene nanoribbons can be folded into a double layer system keeping the two layers decoupled. In the quantum Hall regime folds behave as a new type of Hall bar edge. We show that the symmetry properties of the zero Landau level in metallic nanoribbons dictate that the zero energy edge states traversing a fold are perfectly transmitted onto the opposite layer. This result is valid irrespective of fold geometry, magnetic field strength, and crystallographic orientation of the nanoribbon. Backscattering suppression on the N=0 Hall plateau is ultimately due to the orthogonality of forward and backward channels, much like in the Klein paradox.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call