Abstract

Static program analysis tools can automatically prove many useful properties of programs. However, using static analysis to prove to a third party that a program satisfies a property requires revealing the program's source code. We introduce the concept of zero-knowledge static analysis, in which the prover constructs a zero-knowledge proof about the outcome of the static analysis without revealing the program. We present novel zero-knowledge proof schemes for intra- and inter-procedural abstract interpretation. Our schemes are significantly more efficient than the naive translation of the corresponding static analysis algorithms using existing schemes. We evaluate our approach empirically on real and synthetic programs; with a pairing-based zero knowledge proof scheme as the backend, we are able to prove the control flow analysis on a 2,000-line program in 1,738s. The proof is only 128 bytes and the verification time is 1.4ms. With a transparent zero knowledge proof scheme based on discrete-log, we generate the proof for the tainting analysis on a 12,800-line program in 406 seconds, the proof size is 282 kilobytes, and the verification time is 66 seconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.