Abstract

SummaryTo meet the strategic goals and objectives for the 2020 census, the US Census Bureau must make fundamental changes to the design, implementation and management of the decennial census. The changes must build on the successes and address the challenges of the previous censuses. Of particular interest is to gauge the on-going quality of the census frames. We address this topic by discussing a set of statistical models for the Master Address File that will produce estimates of coverage error at levels of geography down to the block level. The distributions of added and deleted housing units in a block are used to characterize the undercoverage and overcoverage respectively. The data used are from the 2010 address canvassing operation. As will be shown, these distributions are highly right skewed with a very large proportion of 0 counts. Hence, we utilize zero-inflated regression modelling to determine the predicted distribution of additions and deletions. In addition to standard statistical measures, we gauge the performance of this model by simulating a 2010 address canvassing operation using a specified coverage level. We also discuss future maintenance and updating of this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.