Abstract

Phenotypes measured in counts are commonly observed in nature. Statistical methods for mapping quantitative trait loci (QTL) underlying count traits are documented in the literature. The majority of them assume that the count phenotype follows a Poisson distribution with appropriate techniques being applied to handle data dispersion. When a count trait has a genetic basis, “naturally occurring” zero status also reflects the underlying gene effects. Simply ignoring or miss-handling the zero data may lead to wrong QTL inference. In this article, we propose an interval mapping approach for mapping QTL underlying count phenotypes containing many zeros. The effects of QTLs on the zero-inflated count trait are modelled through the zero-inflated generalized Poisson regression mixture model, which can handle the zero inflation and Poisson dispersion in the same distribution. We implement the approach using the EM algorithm with the Newton–Raphson algorithm embedded in the M-step, and provide a genome-wide scan for testing and estimating the QTL effects. The performance of the proposed method is evaluated through extensive simulation studies. Extensions to composite and multiple interval mapping are discussed. The utility of the developed approach is illustrated through a mouse F 2 intercross data set. Significant QTLs are detected to control mouse cholesterol gallstone formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.