Abstract

There is heightened interest in using high-throughput sequencing technologies to quantify abundances of microbial taxa and linking the abundance to human diseases and traits. Proper modeling of multivariate taxon counts is essential to the power of detecting this association. Existing models are limited in handling excessive zero observations in taxon counts and in flexibly accommodating complex correlation structures and dispersion patterns among taxa. In this article, we develop a new probability distribution, zero-inflated generalized Dirichlet multinomial (ZIGDM), that overcomes these limitations in modeling multivariate taxon counts. Based on this distribution, we propose a ZIGDM regression model to link microbial abundances to covariates (e.g. disease status) and develop a fast expectation-maximization algorithm to efficiently estimate parameters in the model. The derived tests enable us to reveal rich patterns of variation in microbial compositions including differential mean and dispersion. The advantages of the proposed methods are demonstrated through simulation studies and an analysis of a gut microbiome dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.