Abstract

The dynamics of the wild boar population has become a pressing issue not only for ecological purposes, but also for agricultural and livestock production. The data related to the wild boar dispersal distance can have a complex structure, including excess of zeros and right-censored observations, thus being challenging for modeling. In this sense, we propose two different zero-inflated-right-censored regression models, assuming Weibull and gamma distributions. First, we present the construction of the likelihood function, and then, we apply both models to simulated datasets, demonstrating that both regression models behave well. The simulation results point to the consistency and asymptotic unbiasedness of the developed methods. Afterwards, we adjusted both models to a simulated dataset of wild boar dispersal, including excess of zeros, right-censored observations, and two covariates: age and sex. We showed that the models were useful to extract inferences about the wild boar dispersal, correctly describing the data mimicking a situation where males disperse more than females, and age has a positive effect on the dispersal of the wild boars. These results are useful to overcome some limitations regarding inferences in zero-inflated-right-censored datasets, especially concerning the wild boar’s population. Users will be provided with an R function to run the proposed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.