Abstract
This paper proposes a novel memristive synaptic Hopfield neural network (MHNN) with time delay by using a memristor synapse to simulate the electromagnetic induced current caused by the membrane potential difference between two adjacent neurons. First, some sufficient conditions of zero bifurcation and zero-Hopf bifurcation are obtained by choosing time delay and coupling strength of memristor as bifurcation parameters. Then, the third-order normal form of zero-Hopf bifurcation is obtained. By analyzing the obtained normal form, six dynamic regions are found on the plane with coupling strength of memristor and time delay as abscissa and ordinate. There are some interesting dynamics in these areas, i.e., the coupling strength of memristor can affect the number and dynamics of system equilibrium, time delay can contribute to both trivial equilibrium and non-trivial equilibrium losing stability and generating periodic solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.