Abstract

In this paper, we study a dynamic coloring of the vertices of a graph G that starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is a zero forcing set of G if, by iteratively5 applying the forcing process, every vertex in G becomes colored. The zero forcing number of G is the minimum cardinality of a zero forcing set of G. In this paper, we prove that if $$G \ne K_4$$ is a connected cubic graph, then the zero forcing number of G is bounded above by twice its domination number, where the domination number of G is the minimum cardinality of a set of vertices of G such that every vertex not in S is adjacent to some vertex in S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.