Abstract

Low-temperature magnetotransport measurements were performed on AlxGa1−xN∕GaN two-dimensional electron systems. By studying the beating pattern in the Shubnikov–de Haas oscillations in a perpendicular magnetic field, we are able to measure the zero-field spin-splitting energies in our systems. Our experimental results demonstrate that the Rashba term due to structural inversion asymmetry is the dominant mechanism which gives rise to the measured zero-field spin splitting in our wurzite AlGaN∕GaN structures. By utilizing the persistent photoconductivity (PPC) effect, we are able to increase the carrier density n in our AlGaN∕GaN two-dimensional electron system. It is found that the Rashba spin-orbit splitting parameter α decreases with increasing n. We suggest that the formation of long-lived electron-hole pairs induced by the PPC effect decreases the large electric field near the AlGaN∕GaN interface, causing α to decrease with increasing n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.