Abstract

We investigated the spin-orbit (SO) effective magnetic-field-induced spin precession of a high-mobility two-dimensional electron gas (2DEG) in a modulation-doped (001) GaAs/AlGaAs quantum well close to the persistent spin helix (PSH) state. The oscillating spin signal induced by the SO fields in zero external magnetic fields was clearly observed. When the photoexcited carrier density is sufficiently small compared with the 2DEG density, the spin precession length in the space domain was obtained by analyzing the precession frequency in the PSH regime. The excitation density dependence of the spin dynamics was reproduced well using the scattering time-dependent spin dynamics simulation. We revealed that the increase in the photoexcited carriers results in a transition from ballistic motion to diffusive motion, leading to a decrease in the spin-diffusion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call