Abstract

We report zero-field routing of spin waves in a multiferroic heterostructure comprising a ferromagnetic Fe film and a ferroelectric BaTiO3 substrate with fully correlated strain-coupled domains. In the Fe film, a regular alternation of magnetic anisotropy produces a back-and-forth rotation of uniform magnetization in zero magnetic field. Spin waves propagating across this domain structure are refracted at the magnetic domain walls because of abrupt changes in the dispersion relation and phase velocity. Using super-Nyquist sampling magneto-optical Kerr effect microscopy, we image the routing of spin waves and analyze the dependence of the effect on frequency and the propagation direction. We find that spin waves are routed efficiently by angles up to 60° without measurable loss in amplitude. The experimental results are reproduced by micromagnetic simulations and calculations based on the modified Snell's law for magnonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.