Abstract

Zero-field-cooling exchange bias (ZFC EB) has always been a research hotspot for researchers, because it can realize the movement of the magnetization hysteresis loop along the field axis without field cooling, which greatly expands the universality and convenience of the application of the exchange bias effect. Achieving ZFC EB at room temperature is an ongoing challenge. To this end, a design strategy from the sublattice level is proposed, and a wide temperature range ZFC EB up to room temperature with a vertical magnetization shift is observed in the strained kagome antiferromagnet Mn3.1Sn0.9. Magnetic analysis and first-principles calculations reveal that the ZFC EB arises from the strong exchange interaction between the non-coplanar antiferromagnetic Mn kagome sublattice occupying normal Mn sites and the collinear ferromagnetic Mn sublattice occupying Sn sites. This discovery is of great significance for the application of ZFC EB in antiferromagnetic spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call