Abstract

Highly efficient and specific energy transfer mechanisms that involve rotation-rotation, vibration-vibration, and vibration-rotation exchange in diatomic molecules are examined theoretically in ultracold H(2), D(2), and HD self-collisions as a function of initial vibrational level v. The three quasiresonant mechanisms are found to operate for all vibrational levels and yield complex scattering lengths which vary smoothly with v. Exceptions to this trend occur at select high values of v where the scattering lengths are modulated by orders of magnitude corresponding to the location of an s-wave zero-energy resonance in "vibration space." The quasiresonant mechanisms, which are not very sensitive to the details of the interaction potential, generally control the final distribution of molecular states for any given initial distribution. The zero-energy resonances are more sensitive to the potential and may be used to vibrationally "tune" the interaction strength, similar to methods which vary applied external fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.