Abstract

This study introduces an innovative double-skin façade system integrated with porous materials (DSF-PM) designed to combat air pollution by purifying atmospheric particulate matter without energy consumption. By evaluating three installation strategies—vertical, horizontal, and cross placement—and examining porous materials with pore sizes of 0.5 mm, 1 mm, and 2 mm through a validated computational fluid dynamics (CFD) model, we optimized the DSF-PM system for enhanced particulate matter purification. Our findings reveal that positioning the porous material on both airflow sides with a pore size of 1 mm yields the best purification performance. The seasonal performance analysis demonstrates that the DSF-PM system achieves an average annual purification efficiency of 26.24% for particles larger than 5 µm, surpassing 20% efficiency, comparable to primary filters in global standards, with zero energy input. This passive double-skin façade system, leveraging solar-driven natural convection, emerges as a sustainable solution for ambient air purification in urban environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call