Abstract

Abstract A chemical reaction network can admit multiple positive steady states if and only if there exists a positive steady state having a zero eigenvalue with its eigenvector in the stoichiometric subspace. A zero eigenvalue analysis is proposed which provides a necessary and sufficient condition to determine the possibility of the existence of such a steady state. The condition forms a system of inequalities and equations. If a set of solutions for the system is found, then the network under study is able to admit multiple positive steady states for some positive rate constants. Otherwise, the network can exhibit at most one steady state, no matter what positive rate constants the system might have. The construction of a zero-eigenvalue positive steady state and a set of positive rate constants is also presented. The analysis is demonstrated by two examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.