Abstract

ABSTRACTThis paper presents a composite control strategy integrating adaptive sliding-mode control and the linear quadratic regulator (LQR) technology for a wheeled inverted pendulum (WIP) vehicle system. The system can be partitioned into an actuated rotational subsystem and an underactuated longitudinal subsystem based on the different control input in the mathematical model. In particular, the instability analysis of zero dynamic for the underactuated longitudinal subsystem is investigated in detail using the feedback linearisation technology. Then, an adaptive sliding-mode control is designed for the trajectory tracking, where an adaptive algorithm is developed to handle with the parameter uncertainties. In addition, the LQR technique is employed to guarantee zero dynamics stability so as to achieve simultaneously the vehicle body stabilisation at the upright position. Simulation results show the good performance and strong robustness of the proposed control schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.