Abstract

We find strong relationships between the zero-divisor graphs of apparently disparate kinds of nilpotent-free semigroups by introducing the notion of an \emph{Armendariz map} between such semigroups, which preserves many graph-theoretic invariants. We use it to give relationships between the zero-divisor graph of a ring, a polynomial ring, and the annihilating-ideal graph. Then we give relationships between the zero-divisor graphs of certain topological spaces (so-called pearled spaces), prime spectra, maximal spectra, tensor-product semigroups, and the semigroup of ideals under addition, obtaining surprisingly strong structure theorems relating ring-theoretic and topological properties to graph-theoretic invariants of the corresponding graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.