Abstract
We study a natural generalization of the zero divisor graph introduced by Anderson and Livingston to commutative rings graded by abelian groups, considering only homogeneous zero divisors. We develop a basic theory for graded zero divisor graphs and present many examples. Finally, we examine classes of graphs that are realizable as graded zero divisor graphs and close with some open questions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.