Abstract

It is well-known that one-dimensional isentropic gas dynamics has two elementary waves, i.e., shock wave and rarefaction wave. Among the two waves, only the rarefaction wave can be connected to a vacuum. Given a rarefaction wave with one-side vacuum state to the compressible Euler equations, we can construct a sequence of solutions to one-dimensional compressible isentropic Navier–Stokes equations which converge to the above rarefaction wave with vacuum as the viscosity tends to zero. Moreover, the uniform convergence rate is obtained. The proof consists of a scaling argument and elementary energy analysis based on the underlying rarefaction wave structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call