Abstract
This paper deals with the results of the breakdown process simulation in strongly overvoltage gaps under high pressures. The presented 0-D model of discharge enables the estimation of characteristic parameters of the initial stage of the breakdown: current rise rate, time of voltage decay across the gap, and current pulse duration of runaway electrons. The discharge model takes into account 0-D growth kinetics of the plasma density in the gap and the impact of the external power supply circuit of the discharge, including the interelectrode capacitance. The model enables estimation of the number and energy range of runaway electrons generated at the initial stage of high-pressure gas breakdown. As an example, computations were conducted for discharge in nitrogen. A comparison of the simulation results with the experimental data enables estimation of the level of the critical field in which we can expect the generation of runaway electrons in the gas discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.