Abstract
<p style='text-indent:20px;'>A zero-dimensional (resp. symbolic) flow is a suspension flow over a zero-dimensional system (resp. a subshift). We show that any topological flow admits a principal extension by a zero-dimensional flow. Following [<xref ref-type="bibr" rid="b6">6</xref>] we deduce that any topological flow admits an extension by a symbolic flow if and only if its time-<inline-formula><tex-math id="M1">\begin{document}$ t $\end{document}</tex-math></inline-formula> map admits an extension by a subshift for any <inline-formula><tex-math id="M2">\begin{document}$ t\neq 0 $\end{document}</tex-math></inline-formula>. Moreover the existence of such an extension is preserved under orbit equivalence for regular topological flows, but this property does not hold for singular flows. Finally we investigate symbolic extensions for singular suspension flows. In particular, the suspension flow over the full shift on <inline-formula><tex-math id="M3">\begin{document}$ \{0,1\}^{\mathbb Z} $\end{document}</tex-math></inline-formula> with a roof function <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> vanishing at the zero sequence <inline-formula><tex-math id="M5">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula> admits a principal symbolic extension or not depending on the smoothness of <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula> at <inline-formula><tex-math id="M7">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula>.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.