Abstract
Ultrasonic time-of-flight diffraction (TOFD) is a non-destructive testing (NDT) technique for weld inspection that has gained popularity in the industry, due to its ability to detect, position, and size defects based on the time difference of the echo signal. Although the TOFD technique provides high-speed data, ultrasonic data interpretation is typically a manual and time-consuming process, thereby necessitating a trained expert. The main aim of this work is to develop a fully automated defect detection and data interpretation approach that enables predictive maintenance using signal and image processing. Through this research, the characterization of weld defects was achieved by identifying the region of interest from A-scan signals, followed by segmentation. The experimental results were compared with samples of known defect size for validation; it was found that this novel method is capable of automatically measuring the defect size with considerable accuracy. It is anticipated that using such a system will significantly increase inspection speed, cost, and safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.