Abstract
While the Chow groups of 0-dimensional cycles on the moduli spaces of Deligne-Mumford stable pointed curves can be very complicated, the span of the 0-dimensional tautological cycles is always of rank 1. The question of whether a given moduli point [C,p_1,...,p_n] determines a tautological 0-cycle is subtle. Our main results address the question for curves on rational and K3 surfaces. If C is a nonsingular curve on a nonsingular rational surface of positive degree with respect to the anticanonical class, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the virtual dimension in Gromov-Witten theory of the moduli space of stable maps. If C is a nonsingular curve on a K3 surface, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the genus of C and every marking is a Beauville-Voisin point. The latter result provides a connection between the rank 1 tautological 0-cycles on the moduli of curves and the rank 1 tautological 0-cycles on K3 surfaces. Several further results related to tautological 0-cycles on the moduli spaces of curves are proven. Many open questions concerning the moduli points of curves on other surfaces (Abelian, Enriques, general type) are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.