Abstract

Abstract We consider a product $X=E_1\times \cdots \times E_d$ of elliptic curves over a finite extension $K$ of ${\mathbb{Q}}_p$ with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of $X$ is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map $CH_0(X)/p^n\rightarrow H^{2d}_{\acute{\textrm{e}}\textrm{t}}(X, \mu _{p^n}^{\otimes d})$. We give specific criteria that guarantee this map is injective for every $n\geq 1$. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension $L$ of $K$ for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.