Abstract
We study zero-cycles in families of rationally connected varieties. We show that for a smooth projective scheme over a henselian discrete valuation ring the restriction of relative zero cycles to the special fiber induces an isomorphism on Chow groups if the special fiber is separably rationally connected. We further extend this result to certain higher Chow groups and develop conjectures in the non-smooth case. Our main results generalise a result of Kollár (Publ. Res. Inst. Math. Sci. 40(3):689–708, 2004).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.