Abstract

ABSTRACTThe reversible property is an important role in noncommutative ring theory. Recently, the study of the reversible ring property on nilpotent elements is established by Abdul-Jabbar et al., introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring) as a generalization of reversible rings. We here study this property skewed by a ring endomorphism α, and such ring is called a right α-skew CNZ ring which is an extension of CNZ rings as well as a generalization of right α-skew reversible rings, and then investigate the structure of right α-skew CNZ rings and their related properties. Consequently, several known results are obtained as corollaries of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.