Abstract

The latest video coding standards, including Moving Picture Experts Group-4 (MPEG-4) advanced video coding (AVC)/H.264 and high-efficiency video coding (HEVC), use a discrete cosine transform (DCT) process as the core for compression efficiency, sacrificing the computational complexity at decoder. There have been a number of attempts to reduce the complexity of inverse DCT (IDCT). Butterfly-based factorisation remains the most commonly used method for such a reduction. In this study, the authors propose a zero (Z) coefficient-aware fast butterfly-based IDCT algorithm for video decoding. They focus on a reduction in the computational complexity of the butterfly-based 8 × 8 IDCT by removing the unnecessary computations of one-dimensional (1D) IDCT kernels, and adaptively applying IDCT kernels based on the number of non-Z DCT coefficients to speed-up 1D data. Their experimental results show that the average operation numbers using the proposed IDCT is approximately half that for the 8 × 8 IDCT implemented in the MPEG-4 AVC/H.264 and HEVC reference software. The improved computational complexity of the proposed method is demonstrated by measuring the running time, which requires only one-half of the IDCT time using the reference software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call