Abstract

Spin-orbit coupling provides a versatile tool to generate and to manipulate the spin degree of freedom in low-dimensional semiconductor structures. The spin Hall effect, where an electrical current drives a transverse spin current and causes a nonequilibrium spin accumulation observed near the sample boundary, the spin-galvanic effect, where a nonequilibrium spin polarization drives an electric current, or the reverse process, in which an electrical current generates a nonequilibrium spin polarization, are all consequences of spin-orbit coupling. In order to observe a spin Hall effect a bias driven current is an essential prerequisite. The spin separation is caused via spin-orbit coupling either by Mott scattering (extrinsic spin Hall effect) or by Rashba or Dresselhaus spin splitting of the band structure (intrinsic spin Hall effect). Here we provide evidence for an elementary effect causing spin separation which is fundamentally different from that of the spin Hall effect. In contrast to the spin Hall effect it does not require an electric current to flow: It is spin separation achieved by spin-dependent scattering of electrons in media with suitable symmetry. We show that by free carrier (Drude) absorption of terahertz radiation spin separation is achieved in a wide range of temperatures from liquid helium up to room temperature. Moreover the experimental results give evidence that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy relaxation processes of nonequilibrium carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.