Abstract

Abnormal event detection with the lowest latency is an indispensable function for safety-critical systems, such as cyber defense systems. However, as systems become increasingly complicated, conventional sequential event detection methods become less effective, especially when we need to define indicator metrics from complicated data manually. Although deep neural networks (DNNs) have been used to handle heterogeneous data, the theoretic assurability and explainability are still insufficient. This article provides a holistic framework for the quickest and sequential detection of abnormalities and time-dependent abnormal events. We explore the latent space characteristics of zero-bias neural networks considering the classification boundaries and abnormalities. We then provide a novel method to convert zero-bias DNN classifiers into performance-assured binary abnormality detectors. Finally, we provide a sequential quickest detection (QD) scheme that provides the theoretically assured lowest abnormal event detection delay under false alarm constraints using the converted abnormality detector. We verify the effectiveness of the framework using real massive signal records in aviation communication systems and simulation. Codes and data are available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/pcwhy/AbnormalityDetectionInZbDNN</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.