Abstract

Zero-bias conductance peaks (ZBCPs) can manifest a number of notable physical phenomena and thus provide critical characteristics to the underlying electronic systems. Here, we report observations of pronounced ZBCPs in hybrid junctions composed of an oxide heterostructure LaAlO_{3}/SrTiO_{3} and an elemental superconductor Nb, where the two-dimensional electron system (2DES) at the LaAlO_{3}/SrTiO_{3} interface is known to accommodate gate-tunable Rashba spin-orbit coupling (SOC). Remarkably, the ZBCPs exhibit a domelike dependence on the gate voltage, which correlates strongly with the nonmonotonic gate dependence of the Rashba SOC in the 2DES. The origin of the observed ZBCPs can be attributed to the reflectionless tunneling effect of electrons that undergo phase-coherent multiple Andreev reflection, and their gate dependence can be explained by the enhanced quantum coherence time of electrons in the 2DES with increased momentum separation due to SOC. We further demonstrate theoretically that, in the presence of a substantial proximity effect, the Rashba SOC can directly enhance the overall Andreev conductance in the 2DES-barrier-superconductor junctions. These findings not only highlight nontrivial interplay between electron spin and superconductivity revealed by ZBCPs, but also set forward the study of superconducting hybrid structures by means of controllable SOC, which has significant implications in various research fronts from superconducting spintronics to topological superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.