Abstract

Hybrid turnstiles have proven to generate accurate single-electron currents. The usual operation consists of applying a periodic modulation to a capacitively coupled gate electrode and requires a nonzero DC source-drain bias voltage. Under this operation, a current of the same magnitude and opposite direction can be generated by flipping the polarity of the bias. Here, we demonstrate that accurate single-electron currents can be generated under zero average bias voltage. We achieve this by applying an extra periodic modulation with twice the frequency of the gate signal and zero DC level to the source electrode. This creates a time interval, which is otherwise zero, between the crossings of tunnelling thresholds that enable single-electron tunnelling. Furthermore, we show that within this operation the current direction can be reversed by only shifting the phase of the source signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.