Abstract
Sparsity-induced kernel adaptive filters have emerged as a promising candidate for a nonlinear sparse system identification (SSI) problem. The existing zero-attracting kernel least mean square (ZA-KLMS) algorithm relies on minimum mean square error criterion, which considers only second order statistics of error, thereby resulting in suboptimal performance in the presence of non-Gaussian/impulsive distortions. In this letter, we propose a novel random Fourier features (RFF) based ZA kernel maximum Versoria criterion (ZA-KMVC) algorithm, and their variants, which are robust for nonlinear SSI in the presence of non-Gaussian distortions over both stationary and time-varying environments. Furthermore, the mean-square convergence analysis of the proposed RFF-ZA-KMVC algorithm is performed. It has been observed from the simulation results that the proposed algorithm delivers better convergence performance as compared to the existing state-of-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.