Abstract

We demonstrate theoretically that the temporal structure of high harmonic x-ray pulses generated with midinfrared lasers differs substantially from those generated with near-infrared pulses, especially at high photon energies. In particular, we show that, although the total width of the x-ray bursts spans femtosecond time scales, the pulse exhibits a zeptosecond structure due to the interference of high harmonic emission from multiple reencounters of the electron wave packet with the ion. Properly filtered and without any compensation of the chirp, regular subattosecond keV waveforms can be produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call