Abstract

Fine-tuning the interlayer space and composition of the layered double hydroxide (LDH) is a promising strategy to obtain high-performance battery-type electrode materials for super-capacitor battery. In this work, a series of two-dimensional (2D) porous hetero-trimetallic Zinc-Nickel-Cobalt LDHs sheets intercalated with nitrate anion and different Zn/Ni ratios (ZnxNi1-xCo-LDH-NO3–, x = 0, 0.25, 0.5, 0.75, and 1.0) are firstly synthesized through a Zeolitic imidazolate framework-L (ZIF-L)-assisted co-precipitation reaction and ion etching procedure. Among which, the Zn0.25Ni0.75Co-LDH-NO3– electrode, with a Zn/Ni ratio of 1:3, provides a high specific capacity (275 mAh g−1 at 1 A g−1). To further tune the interlayer space, Zn0.25Ni0.75Co-LDH-BA–/AA– (BA– = benzoate anion and AA– = acetate anion) sheets intercalated with BA– or AA– are synthesized by an anion-exchange method. A super-capacitor battery device (Zn0.25Ni0.75Co-LDH-BA–//activated carbon) using Zn0.25Ni0.75Co-LDH-BA– as the positive electrode can achieve a high energy density (51.8 Wh kg−1 at 789 W kg−1) and superb durability (94.6% over 10,000 cycles). This work can shed light on regulating the interlayer space of LDHs for advanced electrochemical energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call