Abstract

Zeolitic Imidazolate Framework 67 (ZIF-67) and its derivates have attracted extensive interest for lithium-ion batteries (LIBs). Here, Cerium-doped cobalt phosphide@nitrogen-doped carbon (Ce-doped CoP@NC) with hollow polyhedron structure materials were successfully synthesized via ionic-exchange with Co and Ce ions using the ZIF-67 as a template followed with a facile low-temperature phosphorization treatment. Benefitting from the well-designed hollow polyhedron, steady carbon network, and Ce-doping structural merits, the as-synthesized Ce-doped CoP@NC electrode demonstrated superior performance as the anode in LIBs: a superior cyclability (400 mA h g−1 after 500 cycles) and outstanding rate-capability (590 mA h g−1, reverted to 100 mA g−1). These features not only produced more lithium-active sites for LIBs anode and a shorter Li-ion diffusion pathway to expedite the charge transfer, but also the better tolerance against volume variation of CoP during the repeated lithiation/delithiation process and greater electronic conductivity properties. These results provide a methodology for the design of well-organized ZIFs and rare earth element-doped transition metal phosphate with a hollow polyhedron structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call