Abstract

The integration of reaction and separation in catalytic membrane reactors has received increasing attention during the past 30 years. The combination promises to deliver more compact and less capital-intensive processes with substantial savings in energy consumption. With the advent of new inorganic materials and processing techniques, there has been renewed interest in exploiting the benefits of membranes in many industrial applications. Zeolite membranes, however, have only recently been considered for catalytic membrane reactor applications. Despite the significant recent interest in these types of membranes there are relatively few reports of the application of such membranes in high-temperature catalytic membrane reactor applications. This can be attributed to a number of limitations that still need to be addressed such as the relatively high price of membrane units, the difficulty of controlling the membrane thickness, permeance, high-temperature sealing, reproducibility and the dilemma of upscaling. A number of research efforts, with some degree of success have been directed to finding solutions to the remaining challenges. This review makes a critical assessment of what has been achieved in the past few years in terms of hurdles that still stand in the way of the successful implementation of zeolite membrane reactors in industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.