Abstract

Metric temporal logic (MTL) is one of the most prominent specification formalisms for real-time systems. Over infinite timed words, full MTL is undecidable, but satisfiability for a syntactially defined safety fragment, called safety MTL, was proved decidable several years ago. Satisfiability for safety MTL is also known to be equivalent to a fair termination problem for a class of channel machines with insertion errors. However, hitherto, its precise computational complexity has remained elusive, with only a nonelementary lower bound. Via another equivalent problem, namely termination for a class of rational relations, we show that satisfiability for safety MTL is A ckermann -complete (i.e., among the easiest nonprimitive recursive problems). This is surprising since decidability was originally established using Higman’s Lemma, suggesting a much higher nonmultiply recursive complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.