Abstract

Zein synthesis in the developing (22 and 50 days postpollination) endosperm and embryo of maize (Zea mays L.) double mutants, brittle-1; opaque-2 and brittle-2;opaque-2, were compared and correlated with sucrose concentration and RNase activity in order to test the hypothesis that high sucrose concentrations may prevent the interaction between zein polyribosomes and endoplasmic reticulum and make the zein mRNAs more susceptible to hydrolysis by high RNase activity, resulting in a severe reduction in zein synthesis. The double-mutant combinations of opaque-2 with each of the starch-deficient mutants, brittle-1 and brittle-2, maintained not only a high sucrose concentration in the endosperm but also a higher RNase activity than either one of the single mutants alone. Consequently, these double mutants severely suppressed the synthesis of two major zein components in their endosperms. In contrast to the endosperm system, embryos of the double mutants produced amounts of zein (and electrophoretic patterns) similar to that of the opaque-2 embryo, and their embryos contained levels of sucrose and RNase activity comparable to that of the o2 and normal control. These results are consistent with the notion that a posttranscriptional degradation of zein mRNAs by RNase, rather than a specific transcriptional block, is involved in the endosperm to suppress zein synthesis in these double mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.