Abstract

We report the controlled release of the antibiotic tetracycline (Tet) from triple-layered (3L) electrospun matrices consisting of zein or a zein/PCL blend, where the drug was loaded into the central layer with the two outer layers acting as diffusion barriers. These fibrous matrices successfully encapsulated Tet and efficiently inhibited the growth of a clinical isolate, the methicillin-resistant Staphylococcus aureus strain MRSA252, as demonstrated in a modified Kirby-Bauer disc assay over 5days. Whilst untreated zein fibres are unstable in an aqueous environment, rapidly shrinking due to plasticisation and film formation, blending zein with PCL stabilised the electrospun matrices and prevented them from shrinking. These 3L formulations display sustained antibiotic release and provide a proof of concept for zein-based polymeric matrices as wound dressings to treat or prevent bacterial infection. This is the first demonstration of the controlled release of a clinically used antibiotic from electrospun zein-based matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.