Abstract

The objective of this work is to fabricate zein/fucoidan composite nanoparticles for the delivery of pterostilbene, a hydrophobic nutraceutical with diverse beneficial biological activities. Pterostilbene-encapsulated zein/fucoidan composite nanoparticles were prepared using an anti-solvent precipitation method. The fucoidan levels affected the physicochemical properties of the composite nanoparticles. When the zein to fucoidan mass ratio was 10:1, 5:1, 2:1, or 1:1, the prepared zein/fucoidan nanoparticles were stable, and these nanoparticles showed higher pterostilbene encapsulation efficiency than did zein nanoparticles. Fucoidan-stabilized zein nanoparticles exhibited globular structure with average diameters of 120–150 nm. Fourier-transform infrared spectroscopy, X-ray diffraction, and fluorescence spectrum analysis confirmed that the formation of composite nanoparticles was mainly driven by electrostatic, hydrogen-bonding, and hydrophobic interactions between pterostilbene, zein, and fucoidan. Furthermore, the photochemical stability of pterostilbene encapsulated in zein/fucoidan nanoparticles was markedly better than that of pterostilbene loaded in zein nanoparticles or unencapsulated pterostilbene. Zein/fucoidan nanoparticles provided a better controlled release of pterostilbene than did zein nanoparticles under simulated gastrointestinal conditions. Moreover, the cytotoxicity assay demonstrated that zein/fucoidan nanoparticles were nontoxic to Caco-2, HK-2, and L-02 cells. Based on our results, the zein/fucoidan nanoparticles may be a promising delivery carrier for the encapsulation, protection, and release of pterostilbene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.