Abstract

Tunneling density of states (DOS) in Luttinger liquid has a dip at zero energy, commonly known as the zero-bias anomaly. In the presence of a magnetic field, in addition to the zero-bias anomaly, the DOS develops two peaks separated from the origin by the Zeeman energy. We show that these finite-bias anomalies are characterized by a power-law behavior of the DOS and the differential conductance, and find the corresponding exponents at arbitrary strength of the electron-electron interaction. The developed theory is applicable to various kinds of quantum wires, including carbon nanotubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.