Abstract
Precise timing of the India-Asia collision is important to constrain the evolution history of both the Himalayan orogen and the Tibetan Plateau. It has been proposed that the Indian plate first collided with an intra-oceanic arc at ∼55Ma, and then the composite terrane collided with the Asian continent at ∼35Ma. The Zedong terrane has been suggested to represent the vestige of such an intra-oceanic arc developed within the Neo-Tethys Ocean, as some volcanic rocks with high K2O have been classified as shoshonites. In this study, we present detailed geochemical and geochronological data of various types of magmatic rocks (including volcanic, cumulate and granitic rocks) widely exposed in the Zedong terrane to constrain the formation age and tectonic setting of the Zedong terrane. We found that the Zedong volcanic rocks belong to calc-alkaline series rather than shoshonites and high K2O contents in some volcanic rocks resulted from alteration. The basalts are highly enriched in LREE and LILE, but strongly depleted in HFSE, indicating they were derived from a metasomatized mantle. Presence of hornblende phenocryst in both gabbros and hornblendites indicates that the cumulates were produced from hydrous basalts through crystallization. The granitic rocks have adakite-like compositional characteristics, i.e., high Sr/Y ratios but low Y contents, which were formed by melting of a thickened lower crust. Zircons from six samples, including a volcanic rock (an andesite), three cumulates (a hornblendites, a hornblende-bearing gabbro and a gabbro) and two granitic (a tonalite and a granodiorite) rocks, have been dated to yield identical ages of ∼155–160Ma. This suggests that the volcanic eruption and plutonic emplacement were coevally developed in the Zedong terrane. Zircons from both the andesite and the cumulates have similar positive εHf(t) values (∼+11.6 to +16.7), indicating they were stemmed from similarly depleted mantle sources. Meanwhile, zircons from the granitic rocks also have positive εHf(t) values of ∼+12.6 to +15.2, implying their derivation from a juvenile lower crust. Therefore, we proposed that the basalts in the Zedong terrane were formed through partial melting of the mantle wedge metasomatized by slab-released fluids/melts. A part of hydrous basalts were underplated in the thickened lower crust beneath the Zedong terrane, which gave rise to the cumulate and granitic rocks. By comparison, magmatic rocks in the Zedong terrane show compositional similarities with the Jurassic rocks exposed in the Gangdese arc. This suggests that the Zedong terrane represents a slice of the active continental margin developed on the southern margin of the Lhasa terrane as a result of the northward subduction of the Neo-Tethys Ocean during the Late Jurassic, rather than the vestige of an intra-oceanic arc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.