Abstract

Aberrant DNA methylation reduces the developmental competence of mammalian somatic cell nuclear transfer (SCNT) embryos. Thus, hypomethylation-associated drugs are beneficial for improving reprogramming efficiency. Therefore, in the present study we investigated the effect of zebularine, a relatively novel DNA methyltransferase inhibitor, on the developmental potential of ovine SCNT embryos. First, reduced overall DNA methylation patterns and gene-specific DNA methylation levels at the promoter regions of pluripotency genes (octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog) were found in zebularine-treated cumulus cells. In addition, the DNA methylation levels in SCNT embryos derived from zebularine-treated cumulus cells were significantly reduced at the 2-, 4-, 8-cell, and blastocyst stages compared with their corresponding controls (P<0.05). The blastocyst rate was significantly improved in SCNT embryos reconstructed by the cumulus donor cells treated with 5nM zebularine for 12h compared with the control group (25.4±1.6 vs 11.8±1.7%, P<0.05). Moreover, the abundance of Oct4 and Sox2 mRNA was significantly increased during the preimplantation stages after zebularine treatment (P<0.05). In conclusion, the results indicate that, in an ovine model, zebularine decreases overall DNA methylation levels in donor cumulus cells and reconstructed embryos, downregulates the DNA methylation profile in the promoter region of pluripotency genes in donor cells and ultimately elevates the expression of pluripotency genes in the reconstructed embryos, which can lead to improved development of SCNT embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call