Abstract

The zebrafish mutation curly up (cup) affects the zebrafish ortholog of polycystic kidney disease 2, a gene that encodes the Ca(2+)-activated non-specific cation channel, Polycystin 2. We have characterized two alleles of cup, both of which display defects in organ positioning that resemble human heterotaxia, as well as abnormalities in asymmetric gene expression in the lateral plate mesoderm (LPM) and dorsal diencephalon of the brain. Interestingly, mouse and zebrafish pkd2(-/-) mutants have disparate effects on nodal expression. In the majority of cup embryos, the zebrafish nodal gene southpaw (spaw) is activated bilaterally in LPM, as opposed to the complete absence of Nodal reported in the LPM of the Pkd2-null mouse. The mouse data indicate that Pkd2 is responsible for an asymmetric calcium transient that is upstream of Nodal activation. In zebrafish, it appears that pkd2 is not responsible for the activation of spaw transcription, but is required for a mechanism to restrict spaw expression to the left half of the embryo. pkd2 also appears to play a role in the propagation of Nodal signals in the LPM. Based on morpholino studies, we propose an additional role for maternal pkd2 in general mesendoderm patterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.