Abstract
During zebrafish gastrulation, large cellular rearrangements create the formation of the three germ layers, ectoderm, mesoderm, and endoderm. This process includes three types of conserved morphogenetic movement: epiboly, involution, and convergent extension. Specially, the anterior movement of prechordal plate progenitors is essential for the location and differentiation of mesendoderm progenitors, and the pechordal plate progenitors'coherent migration is thought to be a good model to study the mechanism of cell movement in vivo. Gastrulation migration is known to be controlled by many signaling pathways such as Wnt/planar cell polarity signaling; however, the underlying molecular mechanism for cellular behavior remains unknown. At present, it is generally agree that cell adhesion and cytoskeletal rearrangement are critical factors during zebrafish gastrulation cell migration. In addition, the role of extraembryonic tissue (yolk syncytial layer) during gastrulation is concerned increasingly. Here, we described the essential factors for controlling cellular behaviors and highlighted the major issues and questions that require further investigation during zebra fish gastrular cell migration in order to provide a complete map containing all the factors for regulating gastrulation cell migration and their interactions on a cellular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.