Abstract

Ischemic stroke becomes a major cause of death and disability. It can develop due to intravascular or cardiac thromboemboli. Animal models that reflect diverse stroke mechanisms remain under development. Using photochemical thrombosis, we developed a feasible zebrafish model according to the thrombus location (intracerebral vs. intracardiac). We validated the model using real-time imaging and thrombolytic agent. We used transgenic zebrafish larvae (flk:gfp), which express specific fluorescence in endothelial cells. We injected Rose Bengal, a photosensitizer as a mixture of photosensitizer, and a fluorescent agent into the cardinal vein of the larvae. We then evaluated real-time thrombosis in vivo by inducing thrombosis through exposure to a confocal laser (560 nm) and staining the blood flow (RITC-dextran). We validated intracerebral and intracardiac thrombotic models with checking the activity of tissue plasminogen activator (tPA). The photochemical agent induced the formation of intracerebral thrombi in transgenic zebrafish. Real-time imaging techniques confirmed the formation of the thrombi. The damage and apoptosis of the vessel's endothelial cells were seen in the in vivo model. An intracardiac thrombosis model was developed by the same method using photothrombosis, and the model was validated through thrombolysis by tPA. We developed and validated two zebrafish thrombosis models that are readily available, cost-effective, and intuitive for assessing the efficacy of thrombolytic agents. These models can be used for a broad spectrum of future studies, such as screening and efficacy assessment of new antithrombotic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call